TD 7: Applications Indications

E, F et G désignent des ensembles quelconques.

— Images directes, images réciproques, etc. —

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 1$. Déterminer les ensembles suivants :

$$f(\mathbb{R})$$
 $f([0,1])$ $f^{-1}(\{3\})$ $f^{-1}(]-\infty,5])$

En dessinant la courbe de f, deviner ce que sera la réponse, puis démontrer cela rigoureusement avec les caractérisations.

2 \star Soit $f: x \mapsto x^2$. Déterminer les parties stables par f parmi les ensembles suivants :

$$\begin{bmatrix} 0,1 \end{bmatrix} \quad \begin{bmatrix} 1,2 \end{bmatrix} \quad \begin{bmatrix} -1,1 \end{bmatrix} \quad \mathbb{R}_+$$

Pour chaque ensemble A, déterminer par un dessin ce que sera f(A) pour savoir si A est stable par f. Puis, faites une preuve rigoureuse.

3 ★☆

- 1) Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par $f(x) = \sin \frac{\pi}{x}$. Déterminer $f^{-1}(\{0\})$ et f([0,1]).
- 2) Soit $f: x \mapsto \sqrt{x^2 + 3x}$. Déterminer l'ensemble de définition D_f de f. Déterminer $f^{-1}(\lceil 2, 3\sqrt{2} \rceil)$.

Passer par la caractérisation et résoudre l'équation ou l'inéquation qui en résulte.

Soit $f: E \to E$ une application. Soit $(A_n)_{n \in \mathbb{N}}$ une famille de parties de E, toutes stables par f. Montrer que les ensembles $\bigcap_{n \in \mathbb{N}} A_n$ et $\bigcup_{n \in \mathbb{N}} A_n$ sont stables par f.

L'outil principal est la caractérisation de $x \in \bigcap_{n \in \mathbb{N}} A_n$ et

 $x \in \bigcup_{n \in \mathbb{N}} A_n$. La conclusion tombera ensuite assez rapidement.

5 Soit $A, B \in \mathscr{P}(E)$ et $x \in E$.

- 1) Exprimer $\mathbb{1}_{\overline{A}}(x)$ en fonction de $\mathbb{1}_{A}(x)$
- 2) On suppose que $B \subset A$. Exprimer $\mathbb{1}_{A \setminus B}(x)$ en fonction de $\mathbb{1}_A(x)$ et de $\mathbb{1}_B(x)$.
- 3) Dans le cas général, exprimer $\mathbb{1}_{A\setminus B}(x)$ en fonction de $\mathbb{1}_A(x)$ et de $\mathbb{1}_B(x)$.
- 4) On suppose A et B disjoints. Exprimer $\mathbb{1}_{A \cup B}(x)$ en fonction de $\mathbb{1}_A(x)$ et de $\mathbb{1}_B(x)$.
- 5) Dans le cas général, exprimer $\mathbb{1}_{A \cup B}(x)$ en fonction de $\mathbb{1}_A(x)$ et de $\mathbb{1}_B(x)$. On pourra écrire $A \cup B$ comme une union disjointe de trois ensembles.

Faire des dessins et essayer de deviner quel va être le résultat. Vérifier que l'égalité fonctionne dans tous les cas pour *x* :

- $x \in A \setminus B$,
- $x \in B \setminus A$,
- $x \in A \cap B$
- et $x \notin A \cup B$

Soit $f: E \to F$ une application et $A, A' \in \mathscr{P}(E)$.

- 1) Montrer que : $A \subset A' \implies f(A) \subset f(A')$
- 2) Exhiber un cas particulier où l'implication réciproque est fausse.
- 3) On suppose que f est injective. Montrer que :

$$f(A) \subset f(A') \implies A \subset A'$$

- 1) C'est une démonstration de cours.
- 2) Faites des patates! La question 3 vous montre une situation ou l'implication réciproque est vraie. Il est probable que si on est en dehors de cette situation, des contre-exemples vont émerger.
- 3) Une implication est évidente. Pour l'autre, exploitez toutes les méthodes, définitions et caractérisations que vous connaissez.

7 ** Soit $f: E \to F$ une application et A, B deux parties de E.

- 1) Montrer que $f(A \cap B) \subset f(A) \cap f(B)$.
- 2) Exhiber un cas particulier où l'inclusion réciproque est fausse.
- 3) On suppose que f est injective. Montrer que :

$$f(A \cap B) = f(A) \cap f(B)$$

- 1) C'est une démonstration de cours.
- 2) Faites des patates! La question 3 vous montre une situation ou l'inclusion réciproque est vraie. Il est probable que si on est en dehors de cette situation, des contre-exemples vont émerger.
- 3) Une inclusion est évidente. Pour l'autre, exploitez toutes les méthodes, définitions et caractérisations que vous connaissez.
- **8** \bigstar Soit $f: E \to F$ une application.
- 1) Montrer que : $\forall A \in \mathscr{P}(E)$ $A \subset f^{-1}(f(A))$
- 2) Montrer que : $\forall B \in \mathscr{P}(F)$ $f(f^{-1}(B)) \subset B$
- 3) Montrer que f est surjective si et seulement si :

$$\forall B \in \mathscr{P}(F) \qquad f(f^{-1}(B)) = B$$

4) Montrer que f est injective si et seulement si :

$$\forall A \in \mathscr{P}(E) \qquad A = f^{-1}(f(A))$$

C'est plus facile à vérifier qu'il n'y parait. Servez-vous des différentes caractérisations avec rigueur et précision.

—— Injectivité, surjectivité, bijectivité —

9 ****** Les applications suivantes sont-elles injectives, surjectives, bijectives ?

$$f_1: \mathbb{N} \to \mathbb{N}$$
 $f_2: \mathbb{Z} \to \mathbb{Z}$ $f_3: \mathbb{R}^2 \to \mathbb{R}$
 $n \mapsto n+1$ $n \mapsto n-3$ $(x,y) \mapsto x-y$

$$f_4: \mathbb{C} \to \mathbb{C}$$
 $f_5: \mathbb{C} \to \mathbb{C}$ $f_6: \mathbb{R} \to \mathbb{R}^2$
 $z \mapsto z^2$ $z \mapsto e^z$ $x \mapsto (x, -x)$

$$f_7: \mathbb{R}^2 \to \mathbb{R}^2$$
 $f_8: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$ $(x,y) \mapsto (x+y,x-y)$ $(a,b) \mapsto \frac{a}{b}$

Pour chaque fonction $f: E \to F$, essayez d'abord de prouver que f est injective. Si vous "bloquez", c'est sans doute que f n'est pas injective et le point de blocage peut vous aider à comprendre pourquoi.

Pour la surjectivité, si f n'est pas surjective, on peut parfois s'en rendre compte avec des patates. Sinon, il faut essayer, pour chaque $y \in F$ de résoudre l'équation f(x) = y d'inconnue $x \in E$. De même, vous verrez si cela fonctionne en pratique ou non.

10
$$\Longrightarrow$$
 Soit $F: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$F(x,y,z) = (-x+y+z, z, y)$$

Calculer l'expression de $F \circ F$. Que peut-on en déduire sur F ?

On doit trouver $F \circ F = \mathrm{id}_{\mathbb{R}^3}$. La suite relève du cours.

Soit $a,b,c,d\in\mathbb{C}$ tels que $a\neq 0$, $c\neq 0$ et $ad\neq bc$. On considère l'application

$$f: \mathbb{C} \setminus \left\{ -\frac{d}{c} \right\} \to \mathbb{C} \setminus \left\{ \frac{a}{c} \right\}$$
$$z \mapsto \frac{az+b}{cz+d}$$

- 1) Montrer que f est bien définie.
- 2) Montrer que f est bijective. Déterminer sa réciproque.
- 1) Il suffit de vérifier que $f(z) \neq \frac{a}{c}$. Quel raisonnement peut-on utiliser ?
- 2) On montrera que pour tout $u \in \mathbb{C} \setminus \left\{ \frac{a}{c} \right\}$, l'équation $(\text{Eq}_u): \quad f(z) = u$ d'inconnue $z \in \mathbb{C} \setminus \left\{ -\frac{d}{c} \right\}$ admet une unique solution qu'on calculera.

12 ** Soit f et g dans $\mathscr{F}(\mathbb{N},\mathbb{N})$ les applications définies par :

$$f(n) = 2n$$
 et $g(n) = \begin{cases} n/2 & \text{si } n \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}$

- 1) Montrer que f et g ne sont pas bijectives.
- 2) Calculer $f \circ g$ et $g \circ f$. Sont-elles bijectives ?
- 1) Il y a un défaut d'injectivité pour l'une, un défaut de surjectivité pour l'autre.

Soit $p: E \to E$ telle que $p \circ p = p$ (on dit que p est idempotente).

- 1) Montrer que si p est injective alors $p = id_E$.
- 2) Montrer que si p est surjective alors $p = id_E$.

Pour tout $x \in E$, montrer que p(x) = x en utilisant astucieusement les définitions.

14 ** Soit $f: E \to F$ et $g: F \to G$ deux applications.

- 1) Montrer que si $g \circ f$ est injective, alors f est injective.
- 2) Montrer que si $g \circ f$ est surjective, alors g est surjective.
- 3) Montrer que si $g \circ f$ est bijective, alors f est injective et g est surjective.

Méthode vue en démonstration de cours.

Soit $f \in F^E$, $g \in G^F$ et $h \in H^G$ trois applications. On suppose que $g \circ f$ et $h \circ g$ sont bijectives. Montrer que f, g et h sont bijectives.

Utiliser le résultat démontré dans un autre exercice plus haut : si $g \circ f$ est bijective, alors f est injective et g est surjective.

16 $\star\star\star$ Soit $f: E \to F$ une application. On définit les applications :

$$\varphi: \mathscr{P}(E) \to \mathscr{P}(F) \qquad \psi: \mathscr{P}(F) \to \mathscr{P}(E)$$

$$A \mapsto f(A) \qquad B \mapsto f^{-1}(B)$$

- 1) Montrer que f est injective $\iff \varphi$ est injective $\iff \psi$ est surjective.
- 2) Montrer que f est surjective $\iff \varphi$ est surjective $\iff \psi$ est injective.

Montrer que f est injective si et seulement si φ est injective, puis montrer que f est injective si et seulement si ψ est surjective.

17 $\star\star\star\star$ (*Théorème de Cantor*) Soit E un ensemble non vide.

- 1) Construire un exemple simple d'injection de E dans $\mathcal{P}(E)$.
- 2) Soit $f: E \to \mathcal{P}(E)$. En considérant $A = \{x \in E \mid x \notin f(x)\}$, montrer que f ne peut être une surjection (et donc une bijection) de E sur $\mathcal{P}(E)$.
- 3) En déduire qu'il n'existe pas d'injection de $\mathscr{P}(E)$ sur E. (théorème de Cantor)
- 4) En déduire qu'il n'existe pas d'ensemble contenant tous les ensembles.
- 1) Si $x \in E$, quel est un exemple simple d'élément de $\mathscr{P}(E)$ qu'on pourrait associer de manière unique à x?
- 2) Raisonner par l'absurde et considérer $z \in E$ tel que f(z) = A.
- 3) Si on disposait d'une injection, on pourrait la transformer en bijection par une opération du cours...

— Transformations du plan —

18 ★ Reconnaitre les similitudes définies par

$$f_1(z) = z + i\sqrt{3}$$
 $f_2(z) = 2iz + 1$

$$f_3(z) = (1-i)z + 3i$$
 $f_4(z) = (i+\sqrt{3})z - 2 + 3i$

C'est immédiat par le cours.

19 ★ Donner l'expression explicite des transformations suivantes :

- 1) Rotation de centre Ω d'affixe 1 + i et d'angle $\frac{\pi}{3}$.
- 2) Homothétie de centre Ω d'affixe 2i et de rapport 3.
- 3) Similitude directe de centre Ω d'affixe 1-i de rapport 2 et d'angle $\frac{\pi}{4}$.

C'est immédiat par le cours.

Déterminer la similitude qui envoie le complexe i sur 2i et le complexe 1 sur -2. On déterminera également la rotation et l'homothétie qui la constituent. Si on appelle f cette similitude, alors on peut écrire $f: z \mapsto az + b$ avec $(a,b) \in \mathbb{C}^* \times \mathbb{C}$. On peut reformuler l'hypothèse sur f ainsi : f(i) = 2i et f(1) = -2.

G. Peltier